97
v1v2 (latest)

Fast Distributed k-Means with a Small Number of Rounds

Abstract

We propose a new algorithm for k-means clustering in a distributed setting, where the data is distributed across many machines, and a coordinator communicates with these machines to calculate the output clustering. Our algorithm guarantees a cost approximation factor and a number of communication rounds that depend only on the computational capacity of the coordinator. Moreover, the algorithm includes a built-in stopping mechanism, which allows it to use fewer communication rounds whenever possible. We show both theoretically and empirically that in many natural cases, indeed 1-4 rounds suffice. In comparison with the popular k-means|| algorithm, our approach allows exploiting a larger coordinator capacity to obtain a smaller number of rounds. Our experiments show that the k-means cost obtained by the proposed algorithm is usually better than the cost obtained by k-means||, even when the latter is allowed a larger number of rounds. Moreover, the machine running time in our approach is considerably smaller than that of k-means||. Code for running the algorithm and experiments is available at https://github.com/selotape/distributed_k_means.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.