ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.00161
46
52

CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery

1 February 2022
Michael Laskin
Hao Liu
Xue Bin Peng
Denis Yarats
Aravind Rajeswaran
Pieter Abbeel
    SSL
ArXivPDFHTML
Abstract

We introduce Contrastive Intrinsic Control (CIC), an algorithm for unsupervised skill discovery that maximizes the mutual information between state-transitions and latent skill vectors. CIC utilizes contrastive learning between state-transitions and skills to learn behavior embeddings and maximizes the entropy of these embeddings as an intrinsic reward to encourage behavioral diversity. We evaluate our algorithm on the Unsupervised Reinforcement Learning Benchmark, which consists of a long reward-free pre-training phase followed by a short adaptation phase to downstream tasks with extrinsic rewards. CIC substantially improves over prior methods in terms of adaptation efficiency, outperforming prior unsupervised skill discovery methods by 1.79x and the next leading overall exploration algorithm by 1.18x.

View on arXiv
Comments on this paper