ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.00399
9
4

Language Dependencies in Adversarial Attacks on Speech Recognition Systems

1 February 2022
Karla Markert
Donika Mirdita
Konstantin Böttinger
    AAML
    SILM
ArXivPDFHTML
Abstract

Automatic speech recognition (ASR) systems are ubiquitously present in our daily devices. They are vulnerable to adversarial attacks, where manipulated input samples fool the ASR system's recognition. While adversarial examples for various English ASR systems have already been analyzed, there exists no inter-language comparative vulnerability analysis. We compare the attackability of a German and an English ASR system, taking Deepspeech as an example. We investigate if one of the language models is more susceptible to manipulations than the other. The results of our experiments suggest statistically significant differences between English and German in terms of computational effort necessary for the successful generation of adversarial examples. This result encourages further research in language-dependent characteristics in the robustness analysis of ASR.

View on arXiv
Comments on this paper