ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01987
16
5

Robust Vector Quantized-Variational Autoencoder

4 February 2022
Chieh-Hsin Lai
Dongmian Zou
Gilad Lerman
    DRL
ArXivPDFHTML
Abstract

Image generative models can learn the distributions of the training data and consequently generate examples by sampling from these distributions. However, when the training dataset is corrupted with outliers, generative models will likely produce examples that are also similar to the outliers. In fact, a small portion of outliers may induce state-of-the-art generative models, such as Vector Quantized-Variational AutoEncoder (VQ-VAE), to learn a significant mode from the outliers. To mitigate this problem, we propose a robust generative model based on VQ-VAE, which we name Robust VQ-VAE (RVQ-VAE). In order to achieve robustness, RVQ-VAE uses two separate codebooks for the inliers and outliers. To ensure the codebooks embed the correct components, we iteratively update the sets of inliers and outliers during each training epoch. To ensure that the encoded data points are matched to the correct codebooks, we quantize using a weighted Euclidean distance, whose weights are determined by directional variances of the codebooks. Both codebooks, together with the encoder and decoder, are trained jointly according to the reconstruction loss and the quantization loss. We experimentally demonstrate that RVQ-VAE is able to generate examples from inliers even if a large portion of the training data points are corrupted.

View on arXiv
Comments on this paper