ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.03845
38
1
v1v2 (latest)

BeeHIVE: Behavioral Biometric System based on Object Interactions in Smart Environments

8 February 2022
Klaudia Krawiecka
S. Birnbach
Simon Eberz
Ivan Martinovic
ArXiv (abs)PDFHTML
Abstract

The lack of standard input interfaces in Internet of Things (IoT) ecosystems presents a challenge in securing such infrastructure. To tackle this challenge, we introduce a novel behavioural biometric system based on naturally occurring interactions with objects in smart environments. This biometric leverages existing sensors to authenticate users in such environments without requiring any hardware modifications of existing smart home devices. The system is designed to reduce the need for phone-based authentication mechanisms, on which smart home systems currently rely. It requires the user to approve transactions on their phone only when the user cannot be authenticated with high confidence through their interactions with the smart environment. We conduct a real-world experiment that involves 13 participants in a company environment, using this experiment to also study mimicry attacks on our proposed system. We show that our system can provide seamless and unobtrusive authentication while still staying highly resistant to zero-effort, video, and in-person observation-based mimicry attacks. Even when at most 1% of the strongest type of mimicry attacks are successful, our system does not require the user to take out their phone to approve legitimate transactions in more than 80% of cases for a single interaction. This increases to 92% of transactions when interactions with more objects are considered.

View on arXiv
Comments on this paper