ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.04041
11
33

Physics-informed neural networks for solving parametric magnetostatic problems

8 February 2022
Andrés Beltrán-Pulido
Ilias Bilionis
D. Aliprantis
ArXivPDFHTML
Abstract

The objective of this paper is to investigate the ability of physics-informed neural networks to learn the magnetic field response as a function of design parameters in the context of a two-dimensional (2-D) magnetostatic problem. Our approach is as follows. First, we present a functional whose minimization is equivalent to solving parametric magnetostatic problems. Subsequently, we use a deep neural network (DNN) to represent the magnetic field as a function of space and parameters that describe geometric features and operating points. We train the DNN by minimizing the physics-informed functional using stochastic gradient descent. Lastly, we demonstrate our approach on a \mbox{ten-dimensional} EI-core electromagnet problem with parameterized geometry. We evaluate the accuracy of the DNN by comparing its predictions to those of finite element analysis.

View on arXiv
Comments on this paper