ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.04237
22
0

Learning Robust Convolutional Neural Networks with Relevant Feature Focusing via Explanations

9 February 2022
Kazuki Adachi
Shinýa Yamaguchi
    OOD
ArXivPDFHTML
Abstract

Existing image recognition techniques based on convolutional neural networks (CNNs) basically assume that the training and test datasets are sampled from i.i.d distributions. However, this assumption is easily broken in the real world because of the distribution shift that occurs when the co-occurrence relations between objects and backgrounds in input images change. Under this type of distribution shift, CNNs learn to focus on features that are not task-relevant, such as backgrounds from the training data, and degrade their accuracy on the test data. To tackle this problem, we propose relevant feature focusing (ReFF). ReFF detects task-relevant features and regularizes CNNs via explanation outputs (e.g., Grad-CAM). Since ReFF is composed of post-hoc explanation modules, it can be easily applied to off-the-shelf CNNs. Furthermore, ReFF requires no additional inference cost at test time because it is only used for regularization while training. We demonstrate that CNNs trained with ReFF focus on features relevant to the target task and that ReFF improves the test-time accuracy.

View on arXiv
Comments on this paper