ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.05760
9
3

Assessing Privacy Risks from Feature Vector Reconstruction Attacks

11 February 2022
Emily Wenger
Francesca Falzon
Josephine Passananti
Haitao Zheng
Ben Y. Zhao
    AAML
ArXivPDFHTML
Abstract

In deep neural networks for facial recognition, feature vectors are numerical representations that capture the unique features of a given face. While it is known that a version of the original face can be recovered via "feature reconstruction," we lack an understanding of the end-to-end privacy risks produced by these attacks. In this work, we address this shortcoming by developing metrics that meaningfully capture the threat of reconstructed face images. Using end-to-end experiments and user studies, we show that reconstructed face images enable re-identification by both commercial facial recognition systems and humans, at a rate that is at worst, a factor of four times higher than randomized baselines. Our results confirm that feature vectors should be recognized as Personal Identifiable Information (PII) in order to protect user privacy.

View on arXiv
Comments on this paper