ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.06344
12
27

A Data Augmentation Method for Fully Automatic Brain Tumor Segmentation

13 February 2022
Yu Wang
Ya-Liang Ji
Hongbing Xiao
ArXivPDFHTML
Abstract

Automatic segmentation of glioma and its subregions is of great significance for diagnosis, treatment and monitoring of disease. In this paper, an augmentation method, called TensorMixup, was proposed and applied to the three dimensional U-Net architecture for brain tumor segmentation. The main ideas included that first, two image patches with size of 128 in three dimensions were selected according to glioma information of ground truth labels from the magnetic resonance imaging data of any two patients with the same modality. Next, a tensor in which all elements were independently sampled from Beta distribution was used to mix the image patches. Then the tensor was mapped to a matrix which was used to mix the one-hot encoded labels of the above image patches. Therefore, a new image and its one-hot encoded label were synthesized. Finally, the new data was used to train the model which could be used to segment glioma. The experimental results show that the mean accuracy of Dice scores are 91.32%, 85.67%, and 82.20% respectively on the whole tumor, tumor core, and enhancing tumor segmentation, which proves that the proposed TensorMixup is feasible and effective for brain tumor segmentation.

View on arXiv
Comments on this paper