ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.06466
17
34

Measuring "Why" in Recommender Systems: a Comprehensive Survey on the Evaluation of Explainable Recommendation

14 February 2022
Xu Chen
Yongfeng Zhang
Jingxuan Wen
    XAI
    ELM
    OffRL
ArXivPDFHTML
Abstract

Explainable recommendation has shown its great advantages for improving recommendation persuasiveness, user satisfaction, system transparency, among others. A fundamental problem of explainable recommendation is how to evaluate the explanations. In the past few years, various evaluation strategies have been proposed. However, they are scattered in different papers, and there lacks a systematic and detailed comparison between them. To bridge this gap, in this paper, we comprehensively review the previous work, and provide different taxonomies for them according to the evaluation perspectives and evaluation methods. Beyond summarizing the previous work, we also analyze the (dis)advantages of existing evaluation methods and provide a series of guidelines on how to select them. The contents of this survey are based on more than 100 papers from top-tier conferences like IJCAI, AAAI, TheWebConf, Recsys, UMAP, and IUI, and their complete summarization are presented at https://shimo.im/sheets/VKrpYTcwVH6KXgdy/MODOC/. With this survey, we finally aim to provide a clear and comprehensive review on the evaluation of explainable recommendation.

View on arXiv
Comments on this paper