ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.06924
17
61

Do Gradient Inversion Attacks Make Federated Learning Unsafe?

14 February 2022
Ali Hatamizadeh
Hongxu Yin
Pavlo Molchanov
Andriy Myronenko
Wenqi Li
Prerna Dogra
Andrew Feng
Mona G. Flores
Jan Kautz
Daguang Xu
H. Roth
    FedML
ArXivPDFHTML
Abstract

Federated learning (FL) allows the collaborative training of AI models without needing to share raw data. This capability makes it especially interesting for healthcare applications where patient and data privacy is of utmost concern. However, recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data. In this work, we show that these attacks presented in the literature are impractical in FL use-cases where the clients' training involves updating the Batch Normalization (BN) statistics and provide a new baseline attack that works for such scenarios. Furthermore, we present new ways to measure and visualize potential data leakage in FL. Our work is a step towards establishing reproducible methods of measuring data leakage in FL and could help determine the optimal tradeoffs between privacy-preserving techniques, such as differential privacy, and model accuracy based on quantifiable metrics. Code is available at https://nvidia.github.io/NVFlare/research/quantifying-data-leakage.

View on arXiv
Comments on this paper