Holistic Adversarial Robustness of Deep Learning Models

Abstract
Adversarial robustness studies the worst-case performance of a machine learning model to ensure safety and reliability. With the proliferation of deep-learning-based technology, the potential risks associated with model development and deployment can be amplified and become dreadful vulnerabilities. This paper provides a comprehensive overview of research topics and foundational principles of research methods for adversarial robustness of deep learning models, including attacks, defenses, verification, and novel applications.
View on arXivComments on this paper