ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07503
11
11

BED: A Real-Time Object Detection System for Edge Devices

14 February 2022
Guanchu Wang
Zaid Pervaiz Bhat
Zhimeng Jiang
Yi-Wei Chen
Daochen Zha
Alfredo Costilla Reyes
A. Niktash
Mehmet Gorkem Ulkar
O. E. Okman
Xuanting Cai
Xia Hu
ArXivPDFHTML
Abstract

Deploying deep neural networks~(DNNs) on edge devices provides efficient and effective solutions for the real-world tasks. Edge devices have been used for collecting a large volume of data efficiently in different domains. DNNs have been an effective tool for data processing and analysis. However, designing DNNs on edge devices is challenging due to the limited computational resources and memory. To tackle this challenge, we demonstrate Object Detection System for Edge Devices~(BED) on the MAX78000 DNN accelerator. It integrates on-device DNN inference with a camera and an LCD display for image acquisition and detection exhibition, respectively. BED is a concise, effective and detailed solution, including model training, quantization, synthesis and deployment. The entire repository is open-sourced on Github, including a Graphical User Interface~(GUI) for on-chip debugging. Experiment results indicate that BED can produce accurate detection with a 300-KB tiny DNN model, which takes only 91.9 ms of inference time and 1.845 mJ of energy. The real-time detection is available at YouTube.

View on arXiv
Comments on this paper