ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07941
16
8

A Survey of Approaches for Event Sequence Analysis and Visualization using the ESeVis Framework

16 February 2022
Anton Yeshchenko
Jan Mendling
    AI4TS
ArXiv (abs)PDFHTML
Abstract

Event sequence data is increasingly available. Many business operations are supported by information systems that record transactions, events, state changes, message exchanges, and so forth. This observation is equally valid for various industries, including production, logistics, healthcare, financial services, education, to name but a few. The variety of application areas explains that techniques for event sequence data analysis have been developed rather independently in different fields of computer science. Most prominent are contributions from information visualization and from process mining. So far, the contributions from these two fields have neither been compared nor have they been mapped to an integrated framework. In this paper, we develop the Event Sequence Visualization framework (ESeVis) that gives due credit to the traditions of both fields. Our mapping study provides an integrated perspective on both fields and identifies potential for synergies for future research.

View on arXiv
Comments on this paper