240
v1v2v3v4 (latest)

Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology: AI-Based Decision Support System for Gastric Cancer Treatment

IEEE journal of biomedical and health informatics (IEEE JBHI), 2022
Abstract

Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate. Although artificial intelligence (AI) has brought a great promise to assist pathologist to screen digitalized whole slide images, existing AI systems are limited in fine-grained cancer subclassifications and have little usability in planning cancer treatment. We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance. The AI system is designed to efficiently differentiate multi-classes of GC through multi-scale self-attention mechanism using 2-stage hybrid Vision Transformer (ViT) networks, by mimicking the way how human pathologists understand histology. The AI system demonstrates reliable diagnostic performance by achieving class-average sensitivity of above 0.85 on a total of 1,212 slides from multicentric cohort. Furthermore, AI-assisted pathologists show significantly improved diagnostic sensitivity by 12% in addition to 18% reduced screening time compared to human pathologists. Our results demonstrate that AI-assisted gastric endoscopic screening has a great potential for providing presumptive pathologic opinion and appropriate cancer treatment of gastric cancer in practical clinical settings.

View on arXiv
Comments on this paper