ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.08603
4
10

Cross-Silo Heterogeneous Model Federated Multitask Learning

17 February 2022
Xingjian Cao
Zonghang Li
Gang Sun
Hongfang Yu
Mohsen Guizani
    FedML
ArXivPDFHTML
Abstract

Federated learning (FL) is a machine learning technique that enables participants to collaboratively train high-quality models without exchanging their private data. Participants utilizing cross-silo federated learning (CS-FL) settings are independent organizations with different task needs, and they are concerned not only with data privacy but also with independently training their unique models due to intellectual property considerations. Most existing FL methods are incapable of satisfying the above scenarios. In this study, we present a novel federated learning method CoFED based on unlabeled data pseudolabeling via a process known as cotraining. CoFED is a federated learning method that is compatible with heterogeneous models, tasks, and training processes. The experimental results suggest that the proposed method outperforms competing ones. This is especially true for non-independent and identically distributed settings and heterogeneous models, where the proposed method achieves a 35% performance improvement.

View on arXiv
Comments on this paper