ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.09028
9
12

On the Implicit Bias Towards Minimal Depth of Deep Neural Networks

18 February 2022
Tomer Galanti
Liane Galanti
Ido Ben-Shaul
ArXivPDFHTML
Abstract

Recent results in the literature suggest that the penultimate (second-to-last) layer representations of neural networks that are trained for classification exhibit a clustering property called neural collapse (NC). We study the implicit bias of stochastic gradient descent (SGD) in favor of low-depth solutions when training deep neural networks. We characterize a notion of effective depth that measures the first layer for which sample embeddings are separable using the nearest-class center classifier. Furthermore, we hypothesize and empirically show that SGD implicitly selects neural networks of small effective depths. Secondly, while neural collapse emerges even when generalization should be impossible - we argue that the \emph{degree of separability} in the intermediate layers is related to generalization. We derive a generalization bound based on comparing the effective depth of the network with the minimal depth required to fit the same dataset with partially corrupted labels. Remarkably, this bound provides non-trivial estimations of the test performance. Finally, we empirically show that the effective depth of a trained neural network monotonically increases when increasing the number of random labels in data.

View on arXiv
Comments on this paper