ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.09340
18
23

Learning Physics-Informed Neural Networks without Stacked Back-propagation

18 February 2022
Di He
Shanda Li
Wen-Wu Shi
Xiaotian Gao
Jia Zhang
Jiang Bian
Liwei Wang
Tie-Yan Liu
    DiffM
    PINN
    AI4CE
ArXivPDFHTML
Abstract

Physics-Informed Neural Network (PINN) has become a commonly used machine learning approach to solve partial differential equations (PDE). But, facing high-dimensional secondorder PDE problems, PINN will suffer from severe scalability issues since its loss includes second-order derivatives, the computational cost of which will grow along with the dimension during stacked back-propagation. In this work, we develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks. In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation. We further discuss the model capacity and provide variance reduction methods to address key limitations in the derivative estimation. Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is significantly faster. Our code is released at https://github.com/LithiumDA/PINN-without-Stacked-BP.

View on arXiv
Comments on this paper