ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.09517
323
69
v1v2 (latest)

Deep Learning for Hate Speech Detection: A Comparative Study

International Journal of Data Science and Analysis (JDSA), 2022
19 February 2022
Jitendra Malik
Guansong Pang
Guansong Pang
ArXiv (abs)PDFHTMLGithub (35★)
Abstract

Automated hate speech detection is an important tool in combating the spread of hate speech, particularly in social media. Numerous methods have been developed for the task, including a recent proliferation of deep-learning based approaches. A variety of datasets have also been developed, exemplifying various manifestations of the hate-speech detection problem. We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods, mediated through the three most commonly used datasets. Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art. We particularly focus our analysis on measures of practical performance, including detection accuracy, computational efficiency, capability in using pre-trained models, and domain generalization. In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions. Code and dataset are available at https://github.com/jmjmalik22/Hate-Speech-Detection.

View on arXiv
Comments on this paper