ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.09907
39
17

towards automatic transcription of polyphonic electric guitar music:a new dataset and a multi-loss transformer model

20 February 2022
Yu-Hua Chen
Wen-Yi Hsiao
Tsu-Kuang Hsieh
J. Jang
Yi-Hsuan Yang
ArXivPDFHTML
Abstract

In this paper, we propose a new dataset named EGDB, that con-tains transcriptions of the electric guitar performance of 240 tab-latures rendered with different tones. Moreover, we benchmark theperformance of two well-known transcription models proposed orig-inally for the piano on this dataset, along with a multi-loss Trans-former model that we newly propose. Our evaluation on this datasetand a separate set of real-world recordings demonstrate the influenceof timbre on the accuracy of guitar sheet transcription, the potentialof using multiple losses for Transformers, as well as the room forfurther improvement for this task.

View on arXiv
Comments on this paper