ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.10790
26
14
v1v2v3v4v5v6 (latest)

Secure Joint Communication and Sensing

22 February 2022
Onur Gunlu
Matthieu R. Bloch
Rafael F. Schaefer
Aylin Yener
ArXiv (abs)PDFHTML
Abstract

This work considers mitigation of information leakage between communication and sensing operations in joint communication and sensing systems. Specifically, a discrete memoryless state-dependent broadcast channel model is studied in which (i) the presence of feedback enables a transmitter to simultaneously achieve reliable communication and channel state estimation; (ii) one of the receivers is treated as an eavesdropper whose state should be estimated but which should remain oblivious to a part of the transmitted information. The model abstracts the challenges behind security for joint communication and sensing if one views the channel state as a characteristic of the receiver, e.g., its location. For independent identically distributed (i.i.d.) states, perfect output feedback, and when part of the transmitted message should be kept secret, a partial characterization of the secrecy-distortion region is developed. The characterization is exact when the broadcast channel is either physically-degraded or reversely-physically-degraded. The characterization is also extended to the situation in which the entire transmitted message should be kept secret. The benefits of a joint approach compared to separation-based secure communication and state-sensing methods are illustrated with a binary joint communication and sensing model.

View on arXiv
Comments on this paper