ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.11046
11
4

A policy gradient approach for optimization of smooth risk measures

22 February 2022
Nithia Vijayan
Prashanth L.A.
    OffRL
ArXivPDFHTML
Abstract

We propose policy gradient algorithms for solving a risk-sensitive reinforcement learning (RL) problem in on-policy as well as off-policy settings. We consider episodic Markov decision processes, and model the risk using the broad class of smooth risk measures of the cumulative discounted reward. We propose two template policy gradient algorithms that optimize a smooth risk measure in on-policy and off-policy RL settings, respectively. We derive non-asymptotic bounds that quantify the rate of convergence of our proposed algorithms to a stationary point of the smooth risk measure. As special cases, we establish that our algorithms apply to optimization of mean-variance and distortion risk measures, respectively.

View on arXiv
Comments on this paper