11
13

Sensing accident-prone features in urban scenes for proactive driving and accident prevention

Abstract

In urban cities, visual information on and along roadways is likely to distract drivers and lead to missing traffic signs and other accident-prone (AP) features. To avoid accidents due to missing these visual cues, this paper proposes a visual notification of AP-features to drivers based on real-time images obtained via dashcam. For this purpose, Google Street View images around accident hotspots (areas of dense accident occurrence) identified by a real-accident dataset are used to train a novel attention module to classify a given urban scene into an accident hotspot or a non-hotspot (area of sparse accident occurrence). The proposed module leverages channel, point, and spatial-wise attention learning on top of different CNN backbones. This leads to better classification results and more certain AP-features with better contextual knowledge when compared with CNN backbones alone. Our proposed module achieves up to 92% classification accuracy. The capability of detecting AP-features by the proposed model were analyzed by a comparative study of three different class activation map (CAM) methods, which were used to inspect specific AP-features causing the classification decision. Outputs of CAM methods were processed by an image processing pipeline to extract only the AP-features that are explainable to drivers and notified using a visual notification system. Range of experiments was performed to prove the efficacy and AP-features of the system. Ablation of the AP-features taking 9.61%, on average, of the total area in each image increased the chance of a given area to be classified as a non-hotspot by up to 21.8%.

View on arXiv
Comments on this paper