ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.00186
14
2

ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial Multi-View Clustering

1 March 2022
Yiming Wang
Dongxia Chang
Zhiqiang Fu
Jie Wen
Yao Zhao
ArXivPDFHTML
Abstract

In this paper, we propose an augmentation-free graph contrastive learning framework, namely ACTIVE, to solve the problem of partial multi-view clustering. Notably, we suppose that the representations of similar samples (i.e., belonging to the same cluster) and their multiply views features should be similar. This is distinct from the general unsupervised contrastive learning that assumes an image and its augmentations share a similar representation. Specifically, relation graphs are constructed using the nearest neighbours to identify existing similar samples, then the constructed inter-instance relation graphs are transferred to the missing views to build graphs on the corresponding missing data. Subsequently, two main components, within-view graph contrastive learning (WGC) and cross-view graph consistency learning (CGC), are devised to maximize the mutual information of different views within a cluster. The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering. Experiments on several challenging datasets demonstrate the superiority of our proposed methods.

View on arXiv
Comments on this paper