ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.02865
11
8

Fully Decentralized, Scalable Gaussian Processes for Multi-Agent Federated Learning

6 March 2022
George P. Kontoudis
D. Stilwell
    FedML
ArXivPDFHTML
Abstract

In this paper, we propose decentralized and scalable algorithms for Gaussian process (GP) training and prediction in multi-agent systems. To decentralize the implementation of GP training optimization algorithms, we employ the alternating direction method of multipliers (ADMM). A closed-form solution of the decentralized proximal ADMM is provided for the case of GP hyper-parameter training with maximum likelihood estimation. Multiple aggregation techniques for GP prediction are decentralized with the use of iterative and consensus methods. In addition, we propose a covariance-based nearest neighbor selection strategy that enables a subset of agents to perform predictions. The efficacy of the proposed methods is illustrated with numerical experiments on synthetic and real data.

View on arXiv
Comments on this paper