ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.04923
14
35

On-Robot Learning With Equivariant Models

9 March 2022
Dian Wang
Ming Jia
Xu Zhu
Robin G. Walters
Robert W. Platt
    OffRL
    SSL
ArXivPDFHTML
Abstract

Recently, equivariant neural network models have been shown to improve sample efficiency for tasks in computer vision and reinforcement learning. This paper explores this idea in the context of on-robot policy learning in which a policy must be learned entirely on a physical robotic system without reference to a model, a simulator, or an offline dataset. We focus on applications of Equivariant SAC to robotic manipulation and explore a number of variations of the algorithm. Ultimately, we demonstrate the ability to learn several non-trivial manipulation tasks completely through on-robot experiences in less than an hour or two of wall clock time.

View on arXiv
Comments on this paper