ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.05016
20
18

Shfl-BW: Accelerating Deep Neural Network Inference with Tensor-Core Aware Weight Pruning

9 March 2022
Guyue Huang
Haoran Li
Minghai Qin
Fei Sun
Yufei Din
Yuan Xie
ArXivPDFHTML
Abstract

Weight pruning in deep neural networks (DNNs) can reduce storage and computation cost, but struggles to bring practical speedup to the model inference time. Tensor-cores can significantly boost the throughput of GPUs on dense computation, but exploiting tensor-cores for sparse DNNs is very challenging. Compared to existing CUDA-cores, tensor-cores require higher data reuse and matrix-shaped instruction granularity, both difficult to yield from sparse DNN kernels. Existing pruning approaches fail to balance the demands of accuracy and efficiency: random sparsity preserves the model quality well but prohibits tensor-core acceleration, while highly-structured block-wise sparsity can exploit tensor-cores but suffers from severe accuracy loss. In this work, we propose a novel sparse pattern, Shuffled Block-wise sparsity (Shfl-BW), designed to efficiently utilize tensor-cores while minimizing the constraints on the weight structure. Our insight is that row- and column-wise permutation provides abundant flexibility for the weight structure, while introduces negligible overheads using our GPU kernel designs. We optimize the GPU kernels for Shfl-BW in linear and convolution layers. Evaluations show that our techniques can achieve the state-of-the-art speed-accuracy trade-offs on GPUs. For example, with small accuracy loss, we can accelerate the computation-intensive layers of Transformer by 1.81, 4.18 and 1.90 times on NVIDIA V100, T4 and A100 GPUs respectively at 75% sparsity.

View on arXiv
Comments on this paper