ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.05733
25
21

A Survey of Surface Defect Detection of Industrial Products Based on A Small Number of Labeled Data

11 March 2022
Qifan Jin
L. Chen
ArXivPDFHTML
Abstract

The surface defect detection method based on visual perception has been widely used in industrial quality inspection. Because defect data are not easy to obtain and the annotation of a large number of defect data will waste a lot of manpower and material resources. Therefore, this paper reviews the methods of surface defect detection of industrial products based on a small number of labeled data, and this method is divided into traditional image processing-based industrial product surface defect detection methods and deep learning-based industrial product surface defect detection methods suitable for a small number of labeled data. The traditional image processing-based industrial product surface defect detection methods are divided into statistical methods, spectral methods and model methods. Deep learning-based industrial product surface defect detection methods suitable for a small number of labeled data are divided into based on data augmentation, based on transfer learning, model-based fine-tuning, semi-supervised, weak supervised and unsupervised.

View on arXiv
Comments on this paper