ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.05944
17
20

Saliency-Driven Versatile Video Coding for Neural Object Detection

11 March 2022
Kristian Fischer
Felix Fleckenstein
Christian Herglotz
Andre Kaup
ArXivPDFHTML
Abstract

Saliency-driven image and video coding for humans has gained importance in the recent past. In this paper, we propose such a saliency-driven coding framework for the video coding for machines task using the latest video coding standard Versatile Video Coding (VVC). To determine the salient regions before encoding, we employ the real-time-capable object detection network You Only Look Once~(YOLO) in combination with a novel decision criterion. To measure the coding quality for a machine, the state-of-the-art object segmentation network Mask R-CNN was applied to the decoded frame. From extensive simulations we find that, compared to the reference VVC with a constant quality, up to 29 % of bitrate can be saved with the same detection accuracy at the decoder side by applying the proposed saliency-driven framework. Besides, we compare YOLO against other, more traditional saliency detection methods.

View on arXiv
Comments on this paper