Linear discriminant analysis (LDA) is an important classification tool in statistics and machine learning. This paper investigates the varying coefficient LDA model for dynamic data, with Bayes' discriminant direction being a function of some exposure variable to address the heterogeneity. We propose a new least-square estimation method based on the B-spline approximation. The data-driven discriminant procedure is more computationally efficient than the dynamic linear programming rule \citep{jiang2020dynamic}. We also establish the convergence rates for the corresponding estimation error bound and the excess misclassification risk. The estimation error in distance is optimal for the low-dimensional regime and is near optimal for the high-dimensional regime. Numerical experiments on synthetic data and real data both corroborate the superiority of our proposed classification method.
View on arXiv