ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.06574
14
8

Worst Case Matters for Few-Shot Recognition

13 March 2022
Minghao Fu
Yunhao Cao
Jianxin Wu
ArXivPDFHTML
Abstract

Few-shot recognition learns a recognition model with very few (e.g., 1 or 5) images per category, and current few-shot learning methods focus on improving the average accuracy over many episodes. We argue that in real-world applications we may often only try one episode instead of many, and hence maximizing the worst-case accuracy is more important than maximizing the average accuracy. We empirically show that a high average accuracy not necessarily means a high worst-case accuracy. Since this objective is not accessible, we propose to reduce the standard deviation and increase the average accuracy simultaneously. In turn, we devise two strategies from the bias-variance tradeoff perspective to implicitly reach this goal: a simple yet effective stability regularization (SR) loss together with model ensemble to reduce variance during fine-tuning, and an adaptability calibration mechanism to reduce the bias. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed strategies, which outperforms current state-of-the-art methods with a significant margin in terms of not only average, but also worst-case accuracy. Our code is available at https://github.com/heekhero/ACSR.

View on arXiv
Comments on this paper