ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.07628
13
120

P-STMO: Pre-Trained Spatial Temporal Many-to-One Model for 3D Human Pose Estimation

15 March 2022
Wenkang Shan
Zhenhua Liu
Xinfeng Zhang
Shanshe Wang
Siwei Ma
Wen Gao
    3DH
ArXivPDFHTML
Abstract

This paper introduces a novel Pre-trained Spatial Temporal Many-to-One (P-STMO) model for 2D-to-3D human pose estimation task. To reduce the difficulty of capturing spatial and temporal information, we divide this task into two stages: pre-training (Stage I) and fine-tuning (Stage II). In Stage I, a self-supervised pre-training sub-task, termed masked pose modeling, is proposed. The human joints in the input sequence are randomly masked in both spatial and temporal domains. A general form of denoising auto-encoder is exploited to recover the original 2D poses and the encoder is capable of capturing spatial and temporal dependencies in this way. In Stage II, the pre-trained encoder is loaded to STMO model and fine-tuned. The encoder is followed by a many-to-one frame aggregator to predict the 3D pose in the current frame. Especially, an MLP block is utilized as the spatial feature extractor in STMO, which yields better performance than other methods. In addition, a temporal downsampling strategy is proposed to diminish data redundancy. Extensive experiments on two benchmarks show that our method outperforms state-of-the-art methods with fewer parameters and less computational overhead. For example, our P-STMO model achieves 42.1mm MPJPE on Human3.6M dataset when using 2D poses from CPN as inputs. Meanwhile, it brings a 1.5-7.1 times speedup to state-of-the-art methods. Code is available at https://github.com/paTRICK-swk/P-STMO.

View on arXiv
Comments on this paper