ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09578
16
9

GAC: A Deep Reinforcement Learning Model Toward User Incentivization in Unknown Social Networks

17 March 2022
Shiqing Wu
Weihua Li
Quan-wei Bai
    GNN
ArXivPDFHTML
Abstract

In recent years, many applications have deployed incentive mechanisms to promote users' attention and engagement. Most incentive mechanisms determine specific incentive values based on users' attributes (e.g., preferences), while such information is unavailable in many real-world applications. Meanwhile, due to budget restrictions, realizing successful incentivization for all users can be challenging to complete. In this light, we consider leveraging social influence to maximize the incentivization result. We can directly incentivize influential users to affect more users, so the cost of incentivizing these users can be decreased. However, identifying influential users in a social network requires complete information about influence strength among users, which is impractical to acquire in real-world situations. In this research, we propose an end-to-end reinforcement learning-based framework, called Geometric Actor-Critic (GAC), to tackle the abovementioned problem. The proposed approach can realize effective incentive allocation without having prior knowledge about users' attributes. Three real-world social network datasets have been adopted in the experiments to evaluate the performance of GAC. The experimental results indicate that GAC can learn and apply effective incentive allocation policies in unknown social networks and outperform existing incentive allocation approaches.

View on arXiv
Comments on this paper