ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.10282
13
35

Clickbait Spoiling via Question Answering and Passage Retrieval

19 March 2022
Matthias Hagen
Maik Frobe
Artur Jurk
Martin Potthast
ArXivPDFHTML
Abstract

We introduce and study the task of clickbait spoiling: generating a short text that satisfies the curiosity induced by a clickbait post. Clickbait links to a web page and advertises its contents by arousing curiosity instead of providing an informative summary. Our contributions are approaches to classify the type of spoiler needed (i.e., a phrase or a passage), and to generate appropriate spoilers. A large-scale evaluation and error analysis on a new corpus of 5,000 manually spoiled clickbait posts -- the Webis Clickbait Spoiling Corpus 2022 -- shows that our spoiler type classifier achieves an accuracy of 80%, while the question answering model DeBERTa-large outperforms all others in generating spoilers for both types.

View on arXiv
Comments on this paper