Traffic flow prediction as an essential part of the intelligent transportation system has received critical attention from researchers. However, the complex spatial and temporal dependencies between traffic roads make traffic flow prediction challenging. Existing methods are usually based on graph neural networks using predefined spatial adjacency graphs of traffic networks to model spatial dependencies, ignoring the dynamic correlation of relationships between road nodes. In addition, they usually use independent Spatio-temporal components to capture Spatio-temporal dependencies and do not effectively model global Spatio-temporal dependencies. This paper proposes a new Spatio-temporal Causal Graph Attention Network (STCGAT) for traffic prediction to address the above challenges. In STCGAT, we use a node embedding approach that can adaptively generate spatial adjacency subgraphs at each time step without a priori geographic knowledge and fine-grained modeling of the topology of dynamically generated graphs for different time steps. Meanwhile, we propose an efficient causal temporal correlation component that contains node adaptive learning, graph convolution, and local and global causal temporal convolution modules to learn local and global Spatio-temporal dependencies jointly. Extensive experiments on four real, large traffic datasets show that our model consistently outperforms all baseline models.
View on arXiv