ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12827
14
88

Sparse Instance Activation for Real-Time Instance Segmentation

24 March 2022
Tianheng Cheng
Xinggang Wang
Shaoyu Chen
Wenqiang Zhang
Qian Zhang
Chang Huang
Zhaoxiang Zhang
Wenyu Liu
    ISeg
ArXivPDFHTML
Abstract

In this paper, we propose a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation. Previously, most instance segmentation methods heavily rely on object detection and perform mask prediction based on bounding boxes or dense centers. In contrast, we propose a sparse set of instance activation maps, as a new object representation, to highlight informative regions for each foreground object. Then instance-level features are obtained by aggregating features according to the highlighted regions for recognition and segmentation. Moreover, based on bipartite matching, the instance activation maps can predict objects in a one-to-one style, thus avoiding non-maximum suppression (NMS) in post-processing. Owing to the simple yet effective designs with instance activation maps, SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on the COCO benchmark, which significantly outperforms the counterparts in terms of speed and accuracy. Code and models are available at https://github.com/hustvl/SparseInst.

View on arXiv
Comments on this paper