ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12925
17
7

TCN Mapping Optimization for Ultra-Low Power Time-Series Edge Inference

24 March 2022
Alessio Burrello
Alberto Dequino
Daniele Jahier Pagliari
Francesco Conti
Marcello Zanghieri
Enrico Macii
Luca Benini
M. Poncino
    AI4TS
ArXivPDFHTML
Abstract

Temporal Convolutional Networks (TCNs) are emerging lightweight Deep Learning models for Time Series analysis. We introduce an automated exploration approach and a library of optimized kernels to map TCNs on Parallel Ultra-Low Power (PULP) microcontrollers. Our approach minimizes latency and energy by exploiting a layer tiling optimizer to jointly find the tiling dimensions and select among alternative implementations of the causal and dilated 1D-convolution operations at the core of TCNs. We benchmark our approach on a commercial PULP device, achieving up to 103X lower latency and 20.3X lower energy than the Cube-AI toolkit executed on the STM32L4 and from 2.9X to 26.6X lower energy compared to commercial closed-source and academic open-source approaches on the same hardware target.

View on arXiv
Comments on this paper