ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.14276
15
19

Example-based Hypernetworks for Out-of-Distribution Generalization

27 March 2022
Tomer Volk
Eyal Ben-David
Ohad Amosy
Gal Chechik
Roi Reichart
    OOD
ArXivPDFHTML
Abstract

As Natural Language Processing (NLP) algorithms continually achieve new milestones, out-of-distribution generalization remains a significant challenge. This paper addresses the issue of multi-source adaptation for unfamiliar domains: We leverage labeled data from multiple source domains to generalize to unknown target domains at training. Our innovative framework employs example-based Hypernetwork adaptation: a T5 encoder-decoder initially generates a unique signature from an input example, embedding it within the source domains' semantic space. This signature is subsequently utilized by a Hypernetwork to generate the task classifier's weights. We evaluated our method across two tasks - sentiment classification and natural language inference - in 29 adaptation scenarios, where it outpaced established algorithms. In an advanced version, the signature also enriches the input example's representation. We also compare our finetuned architecture to few-shot GPT-3, demonstrating its effectiveness in essential use cases. To our knowledge, this marks the first application of Hypernetworks to the adaptation for unknown domains.

View on arXiv
Comments on this paper