ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.14499
124
14

NOC-REK: Novel Object Captioning with Retrieved Vocabulary from External Knowledge

28 March 2022
D. Vo
Hong Chen
Akihiro Sugimoto
Hideki Nakayama
ArXiv (abs)PDFHTML
Abstract

Novel object captioning aims at describing objects absent from training data, with the key ingredient being the provision of object vocabulary to the model. Although existing methods heavily rely on an object detection model, we view the detection step as vocabulary retrieval from an external knowledge in the form of embeddings for any object's definition from Wiktionary, where we use in the retrieval image region features learned from a transformers model. We propose an end-to-end Novel Object Captioning with Retrieved vocabulary from External Knowledge method (NOC-REK), which simultaneously learns vocabulary retrieval and caption generation, successfully describing novel objects outside of the training dataset. Furthermore, our model eliminates the requirement for model retraining by simply updating the external knowledge whenever a novel object appears. Our comprehensive experiments on held-out COCO and Nocaps datasets show that our NOC-REK is considerably effective against SOTAs.

View on arXiv
Comments on this paper