ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.16578
21
5

Code Switched and Code Mixed Speech Recognition for Indic languages

30 March 2022
Harveen Singh Chadha
Priyanshi Shah
Ankur Dhuriya
Neeraj Chhimwal
Anirudh Gupta
Vivek Raghavan
ArXivPDFHTML
Abstract

Training multilingual automatic speech recognition (ASR) systems is challenging because acoustic and lexical information is typically language specific. Training multilingual system for Indic languages is even more tougher due to lack of open source datasets and results on different approaches. We compare the performance of end to end multilingual speech recognition system to the performance of monolingual models conditioned on language identification (LID). The decoding information from a multilingual model is used for language identification and then combined with monolingual models to get an improvement of 50% WER across languages. We also propose a similar technique to solve the Code Switched problem and achieve a WER of 21.77 and 28.27 over Hindi-English and Bengali-English respectively. Our work talks on how transformer based ASR especially wav2vec 2.0 can be applied in developing multilingual ASR and code switched ASR for Indic languages.

View on arXiv
Comments on this paper