ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.16954
13
2

An End-to-end Chinese Text Normalization Model based on Rule-guided Flat-Lattice Transformer

31 March 2022
Wenlin Dai
Changhe Song
Xiang Li
Zhiyong Wu
Huashan PAN
Xiulin Li
H. Meng
ArXivPDFHTML
Abstract

Text normalization, defined as a procedure transforming non standard words to spoken-form words, is crucial to the intelligibility of synthesized speech in text-to-speech system. Rule-based methods without considering context can not eliminate ambiguation, whereas sequence-to-sequence neural network based methods suffer from the unexpected and uninterpretable errors problem. Recently proposed hybrid system treats rule-based model and neural model as two cascaded sub-modules, where limited interaction capability makes neural network model cannot fully utilize expert knowledge contained in the rules. Inspired by Flat-LAttice Transformer (FLAT), we propose an end-to-end Chinese text normalization model, which accepts Chinese characters as direct input and integrates expert knowledge contained in rules into the neural network, both contribute to the superior performance of proposed model for the text normalization task. We also release a first publicly accessible largescale dataset for Chinese text normalization. Our proposed model has achieved excellent results on this dataset.

View on arXiv
Comments on this paper