ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.01298
24
4

REM: Routing Entropy Minimization for Capsule Networks

4 April 2022
Riccardo Renzulli
Enzo Tartaglione
Marco Grangetto
ArXivPDFHTML
Abstract

Capsule Networks ambition is to build an explainable and biologically-inspired neural network model. One of their main innovations relies on the routing mechanism which extracts a parse tree: its main purpose is to explicitly build relationships between capsules. However, their true potential in terms of explainability has not surfaced yet: these relationships are extremely heterogeneous and difficult to understand. This paper proposes REM, a technique which minimizes the entropy of the parse tree-like structure, improving its explainability. We accomplish this by driving the model parameters distribution towards low entropy configurations, using a pruning mechanism as a proxy. We also generate static parse trees with no performance loss, showing that, with REM, Capsule Networks build stronger relationships between capsules.

View on arXiv
Comments on this paper