ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.02294
196
6
v1v2 (latest)

ZETAR: Modeling and Computational Design of Strategic and Adaptive Compliance Policies

IEEE Transactions on Computational Social Systems (IEEE TCSS), 2022
5 April 2022
Linan Huang
Quanyan Zhu
ArXiv (abs)PDFHTML
Abstract

Security compliance management plays an important role in mitigating insider threats. Incentive design is a proactive and non-invasive approach to achieving compliance by aligning an employee's incentive with the defender's security objective. Controlling insiders' incentives to elicit proper actions is challenging because they are neither precisely known nor directly controllable. To this end, we develop ZETAR, a zero-trust audit and recommendation framework, to provide a quantitative approach to model incentives of the insiders and design customized and strategic recommendation policies to improve their compliance. We formulate primal and dual convex programs to compute the optimal bespoke recommendation policies. We create a theoretical underpinning for understanding trust and compliance, and it leads to security insights, including fundamental limits of Completely Trustworthy (CT) recommendation, the principle of compliance equivalency, and strategic information disclosure. This work proposes finite-step algorithms to efficiently learn the CT policy set when employees' incentives are unknown. Finally, we present a case study to corroborate the design and illustrate a formal way to achieve compliance for insiders with different risk attitudes. Our results show that the optimal recommendation policy leads to a significant improvement in compliance for risk-averse insiders. Moreover, CT recommendation policies promote insiders' satisfaction.

View on arXiv
Comments on this paper