ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.02919
15
16

Branch Decomposition-Independent Edit Distances for Merge Trees

6 April 2022
Florian Wetzels
Heike Leitte
Christoph Garth
ArXivPDFHTML
Abstract

Edit distances between merge trees of scalar fields have many applications in scientific visualization, such as ensemble analysis, feature tracking or symmetry detection. In this paper, we propose branch mappings, a novel approach to the construction of edit mappings for merge trees. Classic edit mappings match nodes or edges of two trees onto each other, and therefore have to either rely on branch decompositions of both trees or have to use auxiliary node properties to determine a matching. In contrast, branch mappings employ branch properties instead of node similarity information, and are independent of predetermined branch decompositions. Especially for topological features, which are typically based on branch properties, this allows a more intuitive distance measure which is also less susceptible to instabilities from small-scale perturbations. We describe a quartic runtime algorithm for computing optimal branch mappings, which is faster than the only other branch decomposition-independent method in the literature by more than a linear factor. Furthermore, we compare the results of our method on synthetic and real-world examples to demonstrate its practicality and utility.

View on arXiv
Comments on this paper