19
58

IDPG: An Instance-Dependent Prompt Generation Method

Zhuofeng Wu
Sinong Wang
Jiatao Gu
Rui Hou
Yuxiao Dong
V. Vydiswaran
Hao Ma
Abstract

Prompt tuning is a new, efficient NLP transfer learning paradigm that adds a task-specific prompt in each input instance during the model training stage. It freezes the pre-trained language model and only optimizes a few task-specific prompts. In this paper, we propose a conditional prompt generation method to generate prompts for each input instance, referred to as the Instance-Dependent Prompt Generation (IDPG). Unlike traditional prompt tuning methods that use a fixed prompt, IDPG introduces a lightweight and trainable component to generate prompts based on each input sentence. Extensive experiments on ten natural language understanding (NLU) tasks show that the proposed strategy consistently outperforms various prompt tuning baselines and is on par with other efficient transfer learning methods such as Compacter while tuning far fewer model parameters.

View on arXiv
Comments on this paper