ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.05172
14
0

Event Transformer

11 April 2022
Bin Jiang
Zhihao Li
M. Salman Asif
Xun Cao
Zhan Ma
    ViT
ArXivPDFHTML
Abstract

The event camera's low power consumption and ability to capture microsecond brightness changes make it attractive for various computer vision tasks. Existing event representation methods typically convert events into frames, voxel grids, or spikes for deep neural networks (DNNs). However, these approaches often sacrifice temporal granularity or require specialized devices for processing. This work introduces a novel token-based event representation, where each event is considered a fundamental processing unit termed an event-token. This approach preserves the sequence's intricate spatiotemporal attributes at the event level. Moreover, we propose a Three-way Attention mechanism in the Event Transformer Block (ETB) to collaboratively construct temporal and spatial correlations between events. We compare our proposed token-based event representation extensively with other prevalent methods for object classification and optical flow estimation. The experimental results showcase its competitive performance while demanding minimal computational resources on standard devices. Our code is publicly accessible at \url{https://github.com/NJUVISION/EventTransformer}.

View on arXiv
Comments on this paper