ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.05667
11
3

Local Random Feature Approximations of the Gaussian Kernel

12 April 2022
Jonas Wacker
Maurizio Filippone
ArXivPDFHTML
Abstract

A fundamental drawback of kernel-based statistical models is their limited scalability to large data sets, which requires resorting to approximations. In this work, we focus on the popular Gaussian kernel and on techniques to linearize kernel-based models by means of random feature approximations. In particular, we do so by studying a less explored random feature approximation based on Maclaurin expansions and polynomial sketches. We show that such approaches yield poor results when modelling high-frequency data, and we propose a novel localization scheme that improves kernel approximations and downstream performance significantly in this regime. We demonstrate these gains on a number of experiments involving the application of Gaussian process regression to synthetic and real-world data of different data sizes and dimensions.

View on arXiv
Comments on this paper