ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.06160
28
65

Neural Texture Extraction and Distribution for Controllable Person Image Synthesis

13 April 2022
Yurui Ren
Xiaoqing Fan
Ge Li
Shan Liu
Thomas H. Li
    3DH
ArXivPDFHTML
Abstract

We deal with the controllable person image synthesis task which aims to re-render a human from a reference image with explicit control over body pose and appearance. Observing that person images are highly structured, we propose to generate desired images by extracting and distributing semantic entities of reference images. To achieve this goal, a neural texture extraction and distribution operation based on double attention is described. This operation first extracts semantic neural textures from reference feature maps. Then, it distributes the extracted neural textures according to the spatial distributions learned from target poses. Our model is trained to predict human images in arbitrary poses, which encourages it to extract disentangled and expressive neural textures representing the appearance of different semantic entities. The disentangled representation further enables explicit appearance control. Neural textures of different reference images can be fused to control the appearance of the interested areas. Experimental comparisons show the superiority of the proposed model. Code is available at https://github.com/RenYurui/Neural-Texture-Extraction-Distribution.

View on arXiv
Comments on this paper