ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.06242
10
5

Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity

13 April 2022
Arber Qoku
Florian Buettner
ArXivPDFHTML
Abstract

Many real-world systems are described not only by data from a single source but via multiple data views. In genomic medicine, for instance, patients can be characterized by data from different molecular layers. Latent variable models with structured sparsity are a commonly used tool for disentangling variation within and across data views. However, their interpretability is cumbersome since it requires a direct inspection and interpretation of each factor from domain experts. Here, we propose MuVI, a novel multi-view latent variable model based on a modified horseshoe prior for modeling structured sparsity. This facilitates the incorporation of limited and noisy domain knowledge, thereby allowing for an analysis of multi-view data in an inherently explainable manner. We demonstrate that our model (i) outperforms state-of-the-art approaches for modeling structured sparsity in terms of the reconstruction error and the precision/recall, (ii) robustly integrates noisy domain expertise in the form of feature sets, (iii) promotes the identifiability of factors and (iv) infers interpretable and biologically meaningful axes of variation in a real-world multi-view dataset of cancer patients.

View on arXiv
Comments on this paper