ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.06367
16
63

Mixed-Integer Programming for Signal Temporal Logic with Fewer Binary Variables

13 April 2022
Vince Kurtz
Hai Lin
ArXivPDFHTML
Abstract

Signal Temporal Logic (STL) provides a convenient way of encoding complex control objectives for robotic and cyber-physical systems. The state-of-the-art in trajectory synthesis for STL is based on Mixed-Integer Convex Programming (MICP). The MICP approach is sound and complete, but has limited scalability due to exponential complexity in the number of binary variables. In this letter, we propose a more efficient MICP encoding for STL. Our new encoding is based on the insight that disjunction can be encoded using a logarithmic number of binary variables and conjunction can be encoded without binary variables. We demonstrate in simulation examples that our proposed approach significantly outperforms the state-of-the-art for long and complex specifications. Open-source software is available at https://stlpy.readthedocs.io.

View on arXiv
Comments on this paper